skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, David W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metal–insulator–semiconductor/MIS-based photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. 
    more » « less
  2. Wafer-scale synthesis of p-type TMD films is critical for its commercialization in next-generation electro/optoelectronics. In this work, wafer-scale intrinsic n-type WS2films and in situ Nb-doped p-type WS2films were synthesized through atomic layer deposition (ALD) on 8-inchα-Al2O3/Si wafers, 2-inch sapphire, and 1 cm2GaN substrate pieces. The Nb doping concentration was precisely controlled by altering cycle number of Nb precursor and activated by postannealing. WS2n-FETs and Nb-doped p-FETs with different Nb concentrations have been fabricated using CMOS-compatible processes. X-ray photoelectron spectroscopy, Raman spectroscopy, and Hall measurements confirmed the effective substitutional doping with Nb. The on/off ratio and electron mobility of WS2n-FET are as high as 105and 6.85 cm2 V-1 s-1, respectively. In WS2p-FET with 15-cycle Nb doping, the on/off ratio and hole mobility are 10 and 0.016 cm2 V-1 s-1, respectively. The p-n structure based on n- and p- type WS2films was proved with a 104rectifying ratio. The realization of controllablein situNb-doped WS2films paved a way for fabricating wafer-scale complementary WS2FETs. 
    more » « less